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Abstract

Aim: This work studies the problem of predicting neu-
rological recovery from coma with longitudinal electroen-
cephalogram (EEG) recordings raised by the George B.
Moody PhysioNet Challenge 2023.

Methods: Deep neural network (DNN) models were
trained to predict cerebral performance category (CPC)
scale (1 to 5) from bipolar EEGs which were rescaled to
zero mean and unit variance. The prediction was treated
as a 5-class classification task. The models adopted a bot-
tleneck SE-ResNet backbone with long short-term memory
(LSTM) and global attention modules on its top.

Via a stratified splitting, 20% of the training data were
left out as a validation set for model selection. Record-
ings were chosen and sliced according to the pre-computed
signal quality index for training. The AdamW optimizer
and the OneCycle scheduler were used to optimize model
weights on the asymmetric loss of the training data. Pre-
dictions of multiple EEG recordings from one patient were
merged via voting strategies to give a final prediction.

Results: Our team (”Revenger”) received a challenge
score of 0.554 for the clinical outcome prediction on the
hidden test set, ranked 13th out of 36 teams.

Conclusion: Our solution offers a practical way to
continuously monitor the brain after cardiac arrest using
EEGs, with room and potential for further enhancements.

1. Introduction

Cardiac arrest (CA), especially out-of-hospital cardiac
arrest (OHCA), is a major worldwide public health issue
with a low survival rate. CA often results in cerebral le-
sions, a leading cause of early death for patients resusci-
tated from it [1]. Physicians prognosticate the neurologi-
cal recovery outcomes for survivors comatose after initial
treatments [2], which is a challenging task requiring a min-
imal false-positive rate of poor outcomes.

With the aim of improving objectivity and accessibil-
ity for reliable prognostication after CA, the George B.

Moody PhysioNet Challenge 2023 [3, 4] proposed to de-
velop automated auxiliary prognostic support systems us-
ing longitudinal EEG. In this work, a novel approach pro-
viding qualitative neurological interpretations and predic-
tions is presented.

2. Methods

2.1. Dataset and SQI-based Data Selection

The public dataset for the Challenge is the International
Cardiac Arrest REsearch consortium (I-CARE) database
[5]. It contains mainly EEG recordings from comatose pa-
tients with cardiac arrest which were collected up to 72
hours from their return of spontaneous circulation (ROSC).
Although this dataset contains physiological signals other
than EEG, we base this study only on the EEG data for the
following 2 reasons:

• The amount of EEG data in the public dataset is already
enormous, exceeding 30,000 hours in length.
• Previous literature [6] has illustrated the feasibility of
using EEG as the sole physiological signal source on the
problem this work considers.

As the computation resources and execution time are
limited under the circumstances of the Challenge, further
offline data selection was conducted according to the sig-
nal quality index (SQI) of the EEGs. The SQI was com-
puted for every 5-minute epoch as its proportion of “nor-
mal” 10s segments. A 10s segment is regarded as “nor-
mal” if no artefact is detected from it, including abnormal
values and patterns in the waveform and in the spectrum
1 At most one epoch was chosen (requiring SQI ≥ 0.95)
from each EEG recording as a representative of it for de-
veloping our neural network (NN) models (models will be
discussed in Section 2.3). The total number of 5-minute
epochs selected was 23350.

1Refer to https://github.com/DeepPSP/cinc2023/blob
/master/utils/artifact_pipeline for more details.
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2.2. Preprocessing Criteria

In this subsection, we describe our preprocessing
pipeline for model development and making inferences.

The EEG recordings provided by the I-CARE dataset
have varying numbers (19 - 21) of channels but share a
common set of 19 channels. The voltage values of each
EEG signal are relative to an “unknown” reference po-
tential. Hence in order to align these voltage values, the
varying-dimensional EEG signals were transformed into
the bipolar format with the following 18 channels

Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-F8, F8-T4,
T4-T6, T6-O2, Fp1-F3, F3-C3, C3-P3, P3-O1,
Fp2-F4, F4-C4, C4-P4, P4-O2, Fz-Cz, Cz-Pz

Bipolar values were obtained by subtracting the latter
channel from the former channel of the above 18 pairs.

Bipolar EEGs were further standardized with the fol-
lowing 3 sequential operations:
• resample to 100 Hz using polyphase filtering;
• Butterworth bandpass filter of order 4 and cutoff fre-
quencies 0.5 - 30 Hz;
• rescale to zero mean and unit variance (also called z-
score normalization).

It has to be emphasized that the z-score normalization
is a crucial step, without which the model performance
degraded significantly as observed in offline experiments
which is demonstrated in Figure 1.
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Figure 1: Comparison between mean curves of challenge
scores from multiple experiments on the training set with
(w.) and without (w.o.) z-score normalization. Shaded
areas are error bounds (standard error of the mean).

2.3. Neural Network Model Selection

Considering that there’s a clear and widely accepted
(also adopted in the Challenge) mapping from CPC scores
to clinical outcomes as follows:

“Good outcome” for CPC score ∈ {1, 2};
“Poor outcome” for CPC score ∈ {3, 4, 5}, (1)

and that the CPC scores are discrete scalars, we regard the
problem as a 5-class classification problem, i.e. predicting
the 5 discrete CPC scores.

A Time-incremental Convolutional Recurrent Neural
Network (TiCRNN) [7] was adopted as the CPC score
classifier. Models with CRNN architecture, especially
those with SE-ResNet [8] CNN backbones, have proven
effective in various physiological signal processing tasks
[7, 9]. The building block of the SE-ResNet backbone
used in this work consists of 3 sequential convolutional
blocks of bottleneck shape followed by an SE (squeeze-
and-excitation) block with an extra shortcut connecting the
input and output as sketched in Figure 2. The whole archi-
tecture of the TiCRNN model used in this work is depicted
in Figure 3. It is a sequential model with 1 stem convo-
lutional block which takes preprocessed EEG waveforms
as input, 4 SE-Bottleneck blocks, 2 bidirectional LSTM
blocks, 1 SE global attention module, 1 adaptive aver-
age pooling layer which outputs the feature vectors, and
a multi-layer perceptron which takes in the feature vectors
and outputs the probability vectors for the 5 CPC scores.

Conv(n1,m)

Conv(m,m)

Conv(m,n2)

SE Block

Shortcut

Figure 2: The structure of an SE-Bottleneck block. The
mainstream in the dashed box consists of 3 convolu-
tional blocks (actually compositions of convolution, batch
normalization and activation) followed by an SE block.
The channels n1, n2 are typically several times of m,
hence giving the name “bottleneck”. The shortcut is typ-
ically convolutions of kernel size 1, whose stride and in-
put/output channels match the mainstream.

Probability vectors from multiple EEGs of one patient
are averaged and re-normalized via softmax to get the fi-
nal CPC score predictions. The binary clinical outcomes
(good, poor) are obtained by applying the mapping (1).

2.4. Training Strategies

As can be inferred from Figure 4a, We have a highly
imbalanced distribution of the learning objective (the CPC
score) in the I-CARE dataset, which is also divergent
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Figure 3: Architecture of the TiCRNN model. Consid-
ering that the preprocessed input EEG waveforms have a
sampling frequency of 100 Hz, convolutions, except the
shortcuts in SE-Bottleneck blocks, have a kernel size of 3.
The total number of trainable parameters in 92M.

across different hospitals as illustrated in Figure 4b. There-
fore, the asymmetric loss [10], which is the state-of-the-art
loss function for multi-label (and also for multi-class) clas-
sification problems, was chosen as the minimizing objec-
tive. The self-adaptive optimizer AdamW was used in con-
junction with the OneCycle scheduler to incrementally
update the NN model weights towards their optimal.
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Figure 4: Distributions (Dist.) of the “CPC Score” and
“Outcome” against 2 typical categorical metadata vari-
ables. Missing values for each variable were not counted.

The monitor for model selection is the Challenge score
on a left-out validation set which was randomly selected
and consisted of 20% of the public training data. The Chal-
lenge score is defined as the largest TPR (true positive rate)
such that FPR (false positive rate) ≤ 0.05 for the poor clin-
ical outcome prediction. This agrees with the demand for

methods with minimal false-positive rate of poor outcomes
as introduced in Section 1.

A key tension for the Challenge objective lies in the ex-
istence of the large data and the limited computational re-
sources (RAM and CPU time). As a consequence, further
trade-offs were made: we randomly sliced a 3-minute (180
in the number of sample points) piece from each of the se-
lected 5-minute epochs and loaded all the data pieces into
memory every 5 training iterations. The rest primary train-
ing hyperparameters are collected in Table 1. It should be
noted that the maximum number of training iterations was
set to 55 since almost all optimal models were obtained
before 30 iterations in our offline experiments using much
larger total iteration numbers (e.g. 100 iterations).

batch size max early stop learning rate
# iterations patience initial max

32 55 25 2.5e-3 8e-3

Table 1: Primary hyperparameters for NN model training.
To avoid overfitting on the training data, early stop call-
backs were set which were triggered if the best Challenge
score on the left-out validation set stayed unchanged for 25
global iterations. The learning rates were set for the opti-
mizer and its scheduler.

3. Results

The primary Challenge Score, the largest TPR such that
FPR ≤ 0.05 evaluated on the hidden test set up to 72 hours
from ROSC, of our team “Revenger” was 0.554, ranked
13th out of 36 teams. This score and auxiliary scores from
the truncated subsets of 48h / 24h / 12h from ROSC and the
training and hidden validation sets are gathered in Table 2.

Despite the Challenge Score, our solution achieved re-
markable results on MAE of CPC score predictions, which
is the learning target of our solution. CPC MAE was 1.014
on the hidden test set, ranked 4th out of 36 teams. Corre-
sponding CPC MAE results were 0.957, 1.111, and 1.347
on the truncated subsets of 48h / 24h / 12h from ROSC.2

4. Discussion and Conclusions

As the results presented in Section 3 indicate, the
TiCRNN model proposed in this work provides an effec-
tive solution to the problem of predicting the level of neu-
rological recovery for comatose patients after cardiac ar-
rest raised by the Challenge. It is relatively simple and
lightweight, but still able to attain a TPR as high as 0.554
with FPR, which is vital for the patients in this problem,

2Refer to https://github.com/DeepPSP/cinc2023/bl
ob/master/images/Revenger-team-digest.pdf for a full
summary table of all metrics and rankings of our team.
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72h after ROSC 48h after ROSC 24h after ROSC 12h after ROSC
Score Rank Score Rank Score Rank Score Rank

Challenge Score
Test 0.554 13 / 36 0.54 14 / 36 0.257 29 / 36 0.252 16 / 36
Validation 0.701 3 / 36 0.746 1 / 36 0.403 17 / 36 0.328 13 / 36
Training 0.649 27 / 36 0.702 21 / 36 0.673 12 / 36 0.793 3 / 36

Table 2: Challenge scores and rankings evaluated on the Training and the hidden Test/Validation sets, and on their truncated
subsets of 48h / 24h / 12h after ROSC.

suppressed to a very low level (≤ 0.05) for poor clinical
outcome prediction. Another highlight of our solution is
that we obtained fairly good results on the CPC score pre-
dictions. This is not surprising since the CPC score is our
direct learning objective. However, treating it as a classi-
fication problem ignores the ordinal relations of the CPC
scores, which is a potential drawback of this treatment.

As introduced in Section 2.1 and 2.4, we made trade-
offs for the limited computation resources by dropping a
large proportion of the EEG data. The data used for train-
ing the NN models merely constitutes 6 % of the total EEG
data. Our team had planned to make full use of the data to
train a larger model that learns latent representations from
EEGs via unsupervised contrastive learning. However, due
to the constraints of time and computation resources, we
finally decided to stick to the simple TiCRNN model. Ar-
chitecture design and unsupervised training mechanisms
for large EEG models are left as future research directions.

The computation of SQI for EEGs as described in Sec-
tion 2.1 is time-consuming. This prohibited us from adding
a similar selection procedure in the pipeline of model eval-
uation on the hidden data and is highly probable to have
a negative influence on our overall performance, espe-
cially for EEGs which are heavily contaminated with arti-
facts. Developing a faster and end-to-end SQI computation
method would also be a meaningful research problem.

Despite the large EEG data amount, another nice feature
of the I-CARE database is that it provides simultaneous
physiological signals of other types, including electrocar-
diogram (ECG) signals, along with the EEGs. This makes
it possible to explore and develop multi-modal solutions
to the Challenge problem, which is also a topic worth re-
searching but not yet studied in this work.
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